Possible representations of semisimple groups for finite $\mathrm{N}=2$ supersymmetric Yang-Mills theories

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181049
(http://iopscience.iop.org/0305-4470/18/7/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:37

Please note that terms and conditions apply.

Possible representations of semisimple groups for finite $\mathbf{N = 2}$ supersymmetric Yang-Mills theories

Xiang-dong Jiang and Xian-jian Zhou
Institute of High Energy Physics, Academic Sinica Beijing, The People's Republic of China

Received 5 July 1984

Abstract

In this paper we list all possible representations of semisimple groups $\mathrm{G}=$ $\mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{k}(k \geqslant 3)$ for finite $N=2$ supersymmetric Yang-Mills theories, but without consideration of the cases of pseudoreal representations.

Recently a lot of attention has been paid to finite quantum field theories. The first such example is the $N=4$ supersymmetric Yang-Mills (Sym) theory (Gliotti et al 1977, Brink et al 1977), which was first proved to be finite in the light-cone gauge formalism (Mandelstam 1983, Brink et al 1983). The more general cases of finite quantum field theories are the $N=2$ sym theories with $N=2$ matter multiplets provided their gauge coupling β function vanishes at one loop (Howe et al 1983). Attempts have just been made to obtain the sufficient and necessary conditions for a finite $N=1$ sym theory (Parkes and West 1984). An $N=2$ sym theory usually includes an $N=2$ vector multiplet which consists of an $N=1$, vector multiplet and an $N=1$ chiral multiplet all in the adjoint representation of gauge group G, and several $N=2$ matter multiplets each of which consists of an $N=1$ chiral scalar multiplet in representation R_{i} and an $N=1$ chiral scalar multiplet in representation \bar{R}_{i}. Most recently Derendinger et al (1984) extended the $N=2$ matter multiplets to include $N=1$ chiral scalar multiplets in pseudoreal representations $R_{p j}$ of the gauge group G. The vanishing of β function at one-loop level for simple group G becomes

$$
\begin{equation*}
C_{2}(G)=\sum_{i} T\left(R_{i}\right)+\frac{1}{2} \sum_{j} T\left(R_{p j}\right) \tag{1}
\end{equation*}
$$

where $C_{2}(\mathrm{G})$ is the value of the quadratic Casimir operator for the adjoint representation of G, and $T(R)$ is the Dynkin index of representation R. For a semisimple group $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{k}$ where $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{k}$ are simple groups, criterion (1) for a finite $N=2$ sym theories can be easily extended to
$C_{2}\left(\mathrm{G}_{1}\right)=\sum_{i} T\left(R_{1}^{(i)}\right) \times \operatorname{dim} R_{2}^{(i)} \times \ldots \times \operatorname{dim} R_{k}^{(i)}+\frac{1}{2} \sum_{j} T\left(R_{1}^{j}\right) \times \operatorname{dim} R_{2}^{j} \times \ldots \times \operatorname{dim} R_{k}^{j}$
$\underset{:}{C_{2}}\left(\mathrm{G}_{2}\right)=\sum_{i} \operatorname{dim} R_{1}^{(i)} \times T\left(R_{2}^{(i)}\right) \times \ldots \times \operatorname{dim} R_{k}^{(i)}+\frac{1}{2} \sum_{j} \operatorname{dim} R_{1}^{j} \times T\left(R_{2}^{j}\right) \times \ldots \times \operatorname{dim} R_{k}^{j}$
$C_{2}\left(\mathrm{G}_{k}\right)=\sum_{i} \operatorname{dim} R_{1}^{(i)} \times \operatorname{dim} R_{2}^{(i)} \times \ldots \times T\left(R_{k}^{(i)}\right)+\frac{1}{2} \sum_{j} \operatorname{dim} R_{1}^{j} \times \operatorname{dim} R_{2}^{j} \times \ldots \times T\left(R_{k}^{j}\right)$
where $N=2$ matter multiplets are in the representations $R^{(i)}=R_{1}^{(i)} \times R_{2}^{(i)} \times \ldots \times R_{k}^{(i)}$ and $\bar{R}^{(i)}$, as well as in the pseudoreal representations $R_{p j}=R_{1}^{j} \times R_{2}^{j} \times \ldots \times R_{k}^{j}$. The
condition for $R_{p j}$ being pseudoreal is that the number of pseudoreal representations in $R_{1}^{j}(l=1, \ldots, k)$ is odd and the other ones are real or singlets. The dimension of representation R is denoted by $\operatorname{dim} R$.

As for a given gauge group G, there are few representations with Dynkin index smaller than $C_{2}(G)$, there are only finite number of sets of representations satisfying (1). So representations of all classical simple groups satisfying (1) were found (Koh and Rajpoot 1984, Derendinger et al 1984) and the candidates for a finite grand unified theory which can accommodate at least three generations of ordinary quarks and leptons were discussed (Dong et al 1984, Derendinger et al 1984). We have found representations of semisimple groups $\mathrm{G}=\mathrm{G}_{1} \times \mathrm{G}_{2}$ and $\mathrm{G}=\mathrm{SU}\left(m_{1}\right) \times \mathrm{SU}\left(m_{2}\right) \times \ldots \times$ $\mathrm{SU}\left(m_{k}\right)$ satisfying (2) when the part of pseudoreal representations in (2) is not considered (Jiang and Zhou 1984a, b). In this paper we will complete the representations of all classical semisimple gauge groups $G=G_{1} \times \ldots \times G_{k}(K \geqslant 3)$ satisfying (2), still not considering pseudoreal representations in (2). The contributions from pseudoreal representations for semisimple groups will be given elsewhere.

We need only consider k (the number of simple groups G_{i} of G) $\geqslant 3$, and study the cases where at least one subgroup G_{i} does not belong to $\mathrm{SU}(m)$. It is convenient for us to consider $\operatorname{Sp}(2 n)(n \geqslant 2)$ and $\operatorname{SO}(2 n+1)(n \geqslant 3)$, instead of $\operatorname{Sp}(2 n)(n \geqslant 3)$ and $\operatorname{SO}(2 n+1)(n \geqslant 2)$. In doing so the complicated cases only appear in the semisimple groups consisting of $\mathrm{SU}(m)$ and $\mathrm{Sp}(2 n)$. As in the case of $\mathrm{G}=\mathrm{SU}\left(m_{1}\right) \times \ldots \times \operatorname{SU}\left(m_{k}\right)$ (Jiang and Zhou 1984b) we need only consider the irreducible cases where (2) can not be divided into two independent sets of equations. Also we can use a diagram to denote a set of representations of G satisfying (2). We use a dot to denote a subgroup $\mathrm{SU}(m)$ and write down m near the dot. A small circle is used to denote the other classical simple group G_{i}, such as $\mathrm{Sp}(2 n), \mathrm{SO}(n)$ etc, and G_{i} is written near the circle. As $\operatorname{Sp}(2 n)$ appear many times, we simply write down the number $2 n$ near the circle most of the time. In the cases under consideration the representation $R^{(i)}=$ $R_{1}^{(i)} \times \ldots \times R_{1}^{(i)} \times \ldots \times R_{1}^{(i)} \times \ldots \times R_{k}^{(i)}$ of $G=G_{1} \times \ldots \times G_{1} \times \ldots \times \mathrm{G}_{t} \times \ldots \times \mathrm{G}_{k}$ can be only non-singlets at most for two subgroups, for example G_{1} and G_{r}. There are only some choices in these cases. (1) $\mathrm{G}_{1}=\mathrm{SU}\left(m_{1}\right), \mathrm{G}_{\mathrm{t}}=\mathrm{SU}\left(m_{t}\right)$ and $R_{1}^{(i)}, R_{t}^{(i)}$ are fundamental representations \square. (2) $\mathrm{G}_{1}=\mathrm{SU}(m), \mathrm{G}_{t}=\mathrm{Sp}(2 n)$ and $R_{\mathrm{l}}^{(i)}=\square, R_{t}^{(i)}=R_{1}$. (3) $\mathrm{G}_{1}=\mathrm{SU}(m), \mathrm{G}_{t}=\mathrm{SO}(n)$ and $R_{1}^{(i)}=\square, R_{t}^{(i)}=R_{\mathrm{f}}$. (4) $\mathrm{G}_{1}=\mathrm{Sp}(2 n), \mathrm{G}_{t}=\mathrm{SO}(n)$ and $R_{\mathrm{l}}^{(i)}=R_{1}, R_{t}^{(i)}=R_{\mathrm{f}}$. In all these four cases we connect the corresponding dot (or circle) and dot (or circle) by a line. (5) $\mathrm{G}_{1}=\mathrm{SU}(m), \mathrm{G}_{t}=\mathrm{SO}(n)$ and $R_{1}^{(i)}=\square, R_{\mathrm{f}}^{(i)}=R_{\mathrm{s}}$. Here double lines connect the dot of $\mathrm{SU}(m)$ and the circle of $\mathrm{SO}(n)$. Except for the cases considered above, all $R^{(i)}$ of G can be non-singlets only for one subgroup G_{1} of G, and in such cases we write the corresponding representation $R_{1}^{(i)}$ near the dot (or circle) of G_{1}. The representations $R_{1}, R_{\mathrm{f}}, R_{\mathrm{s}}$ etc appearing here are listed in table 2. Hence every set of representations of G satisfying (2) can be expressed by a diagram.

There is only one diagram consisting of circles, which is $\stackrel{4}{\circ}$ ones have to include dots as well. So we can add circles into the diagrams of $\mathrm{G}=\mathrm{SU}\left(m_{1}\right) \times \ldots \times \mathrm{SU}\left(m_{k}\right)$ to obtain all these diagrams. The exceptional groups E_{6}, $\mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}$ and G_{2} can not appear in a diagram when $k \geqslant 3$. We list all diagrams under consideration in A and B of table 1.
Table 1. All diagrams satisfying (2) without considering pseudoreal representations and with the number of simple subgroups of G greater than two. \dagger

Table 1. (continued)

Table 1. (continued)

Table 1. (continued)

N

Table 1. (continued)

Table 2. The dimension and Dynkin index of classical groups representations.

$R_{\mathrm{f}}, R_{\mathrm{s}}$ and R_{a} refer to the fundamental representation, spinor representation and adjoint representation, respectively.

Acknowledgments

We would like to thank T S Tu for beneficial discussion.

References

Brink L, Lindgren O and Nilsson B E W 1983a Phys. Lett. 123B 323
__ 1983b Nucl. Phys. B 212401
Brink L, Schwarz J and Scherk J 1977 Nucl. Phys. B 12177
Derendinger J P, Ferrara S and Masiero A 1984 Preprint TH 3854-CERN
Dong F X, Tu T S, Xue P Y and Zhou X J 1984 Phys. Lett. 140B 333
Gliotti F, Scherk J and Olive O 1977 Nucl. Phys. B 122253
Howe P, Stelle K and West P 1983 Phys. Lett. 124B 55
Jiang X D and Zhou X J 1984a Phys. Lett. 144B 370
-_ 1984b J. Phys. A: Math. Gen. 173397
Koh I G and Rajpoot S 1984 Phys. Lett. 135B 397
Mandelstam S 1983 Nucl. Phys. B 213149
Parkes A and West P 1984 Phys. Lett. 138B 99

